Symmetries in Physical World

نویسنده

  • Mukul Agrawal
چکیده

II Symmetries in Classical Particle Mechanics 4 1 Hamiltonian and Lagrangian Formulations of Classical Particle Mechanics 5 1.1 Basic De nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Virtual Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Generalized Dynamical Variables . . . . . . . . . . . . . . . . . . . . 7 1.2 Dynamical Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.1 Euler-Lagrange's Equation of Motion . . . . . . . . . . . . . . . . . . 11 1.2.2 Hamilton's Equation of Motion . . . . . . . . . . . . . . . . . . . . . 12 1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Uniqueness of Lagrangian Function 13 3 Canonical Variables and Canonical Transforms 14

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Diffusion Equation with Exponential Nonlinearity Recant Developments

The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...

متن کامل

New Solutions for Fokker-Plank Equation of‎ ‎Special Stochastic Process via Lie Point Symmetries

‎In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process‎. ‎This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process‎.

متن کامل

Why Are Symmetries a Universal Language of Physics? (on the unreasonable effectiveness of symmetries in physics)

In this paper, we prove that in some reasonable sense, every possible physical law can be reformulated in terms of symmetries. This result explains the wellknown success of group-theoretic approach in physics. 1 Formulation of the Problem Traditional physics used differential equations to describe physical laws. Modern physical theories (starting from quarks) are often formulated not in terms o...

متن کامل

The Symmetries of Equivalent Lagrangian Systems and Constants of Motion

In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to th...

متن کامل

Detecting Skewed Symmetries

Many surfaces of objects in our world are bounded by planar bilaterally symmetric gures. When these gures are imaged under orthographic projection a skewed symmetric contour results. In this paper a new fast, local method to recover skewed symmetries from curve segments is proposed. It can be applied to complete as well as to occluded contours. Furthermore, the skewed symmetry property is emplo...

متن کامل

Fractional superstrings with space-time critical dimensions four and six.

We propose possible new string theories based on local world-sheet symmetries corresponding to extensions of the Virasoro algebra by fractional spin currents. They have critical central charges c = 6(K + 8)/(K + 2) and Minkowski space-time dimensions D = 2+16/K for K ≥ 2 an integer. We present evidence for their existence by constructing modular invariant partition functions and the massless pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002